gasilholistic.blogg.se

Teenager model
Teenager model













People are attaching greater importance to personal health monitoring, especially in the context of the global COVID-19 pandemic background. The experimental results provide evidence supporting the feasibility of predicting teenagers’ physical fitness levels by their running PPG recordings.

teenager model

Finally, we built a 1D-CNN with LSTM model to classify teenagers’ physical fitness condition into four levels: excellent, good, medium, and poor, with an accuracy of 98.27% for boys’ physical fitness prediction, and 99.26% for girls’ physical fitness prediction. Then, we used the Pearson correlation coefficient method to finalize the feature set, based on the extracted nine physical features. Next, we applied the median filter and wavelet transform to denoise the original signals and obtain HR and SpO 2.

teenager model

First, we collected 1024 teenagers’ PPGs under the guidance of the proposed three-stage running paradigm. To solve the challenge that traditional methods of monitoring teenagers’ physical fitness lack accurate computational models and in-depth data analyses, we propose a novel evaluation model for predicting the physical fitness of teenagers.

teenager model

With the progress of biosensing technologies and artificial intelligence, it is feasible to apply wearable devices to continuously record teenagers’ physiological signals and make analyses based on modern advanced methods. People attach greater importance to the physical health of teenagers because adolescence is a critical period for the healthy development of the human body.















Teenager model